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The problem of the stability of the equilibrium of a mechanical system constrained by single-sided 

constraints is considered. It is assumed that in the equilibrium state the constraints are realized, but there 

are no reactions. It is shown that the conditions for the equilibrium of such systems to be stable can be 

obtained by an analysis of the sign-definiteness of a pencil of quadratic forms in a cone. A method of solving 

this algebraic problem is given. 

1. CONSIDER a mechanical system with generalized coordinates q = (ql, . . . , qn) and Lagrangian 
L = T2 - II, where 

T2 = T2Hrq 1 = %(q’,A(q)q’), JI= n(4) (1.1) 

the matrix-function A(q) and the function II(q) are analytical in some domain D of a space R”, and 
angle brackets denote the scalar product. We assume that the motion of the system is restricted by 
single-sided ideal constraints of the form 

41 2 0, i= 1,2 ,... ,m, m<n (1.2) 

We define the perturbed motion as follows. In the time intervals between momentary impulses 
the motion of the system is governed by the laws of mechanics for unconstrained systems [l]. The 
coefficients of restitution at the impulsive instants are equal to unity. If at an impulsive instant not 
one, but several constraints are realized (“multiple impulse”) then the continuation of the motion 
after the impulse may be non-unique. The possible non-uniqueness in the determination of the 
perturbed motion is not an obstacle to investigating the stability of the equilibrium, if in the 
definition of stability one requires smallness of any perturbed motion for small perturbations of the 
initial conditions. 

According to the principle of virtual displacement in a position of equilibrium of system (1.1) 
(1.2) the inequalities [l, 21 

( an/aq, bq ) 3 0, 6q = @q,, *. * , bqd (1.3) 

are satisfied. Below we shall consider a position of equilibrium q* ED in which the constraints on 

41,. . *, qm are realized, (i.e. qf = 0, i = 1, . . . , m) but the reactions are equal to zero. 
In condition (1.3) the independent quantities 6qi take non-negative values for i = 1, . . . , m and 

are unrestricted in sign for i = m + 1, . . . , n, while the quantities -dll/8qi are proportional to the 
reactions at the constraints. Hence at position q* the condition 

an/aq = 0 (1.4) 

is satisfied, i.e. q* is a stationary point of the function II(q). Condition (1.4) is necessary and 
sufficient for the equilibrium of the system in position q* and the absence of reactions at the 
constraints qi 3 0, i = 1, . . . , m. We have the following generalized Lagrange-Dirichlet theorem [3]. 
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FIG. 1. 

Theorem 1. If at the position q* = (0, . . . , 0, qg+l, . . . , 4:) ED the function II(q) has a strict 
local minimum in the domain qi 3 0, i = 1, . . . , m, qE D, then this position has Lyapunov stability. 

We also have the following assertion generalizing Lyapunov’s theorem [4]. 

Theorem 2. If the function II(q) does not have a local minimum at the point q* = (0, . . . , 0, 
* 

qm+1,. .., q*,)EDinthedomainqiaO,i=l,..., m, qE D, and the absence of the minimum is 
established by second-order terms in the expansion of II(q) in powers of q in a neighbourhood of q* , 
then the position of q* is unstable. 

Below we shall consider systems in which the function II(q) depends not only on the coordinates 
q, but also on a numerical parameter (Y taking values in a domain R of the numerical axis, in which 
the position q* is an equilibrium for all values of aE R. This means that conditions (1.4) are satisfied 
at q = q* for all (YE R. Examples of such systems are shown in Figs 1 and 2. 

The system in Fig. 1 consists of three rods rotating in a vertical plane. The coordinates ql, q2, q3 are the 
angles of inclination of the rods from the vertical. The positive direction of q1 and q2 is clockwise, and that of q3 
is anticlockwise. The constraints qi. ‘0 are implemented by buffers. Helical springs attached to fixed points and 
to the rods create restoring moments proportional to the qi, and have coefficients of rigidity Ki. Springs joining 
the ends of the rods have coefficients of rigidity k,. The distance from the points of attachments of the rods to 

FIG. 2 
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the springs are all equal to 1. The distances between the points of attachment of rods 1, 2 and 2,3 horizontally 
are the same and equal to r. The mass m0 of each of three identical spheres attached to the ends of the rods 
plays the role of the parameter (Y. The potential energy of the system has the form 

3 

rI(9,4) = QIKl’lf + m, t i (I - ~0~9~) + K,-s (7) + K,+, (r) + K:, (2r) 
i- 1 

K;(r) = Hktjl{[@s92 - @S9,)l + (sinq, - sinq, + r/w I H - rllj ’ 

where g is the acceleration due to gravity. Here n = m = 3, (Y = m. and R = [0, +m). Condition (1.4) at 
q* = (0, 0,O) will be satisfied for all a E R. 

The system of Fig. 2 consists of four rods with ends hinged to a common point and rotating in a common 
plane. The angles of inclination of rods 1 and 3 to the vertical are chosen to be coordinates q1 and q3. 
Coordinates q2 and q4 are the angles of inclination of rods 2 and 4 from the horizontal. The positive direction 
for angles q1 and q4 is clockwise, and anticlockwise for angles q2 and q3. The constraints qi 2 0 are implemented 
by buffers. The rods are joined by helical springs which produce moments 

M,, = “11 19, +9, 1, h, = $1 191 -9, 1 

MS4 = Ka4 19, +9, 1~ M,, = $4 191--9. 1 

(taking account of the chosen positive directions). It is assumed that there is no force of gravity. The plane in 
which the rods move rotates about the O-O’ axis with constant angular velocity o. Masses Mi are attached to 
the ends of the rods and li is the length of the ith rod. 

The variable potential energy of the system has the form 

n = -#w’ [m, (I, sia19,)~ + m, (I, sinq,)’ + m, (Ia ~0~9,)’ + m, (I, COS~,)~] + (1.5) 

++4iK1,(9i +91)‘+‘54(91 -94)‘+K1,(93 -9,)‘+54(9, +94)‘1 

Here (Y = w2, m = IZ = 4 and condition (1.4) at q* = (0, 0, 0, 0) is satisfied for all LYER = [0, +m). 
The problem under consideration is to obtain conditions on the parameter (Y which ensure that the 

equilibrium position of system (1. l), (1.2) is stable by Theorems 1 and 2. 

2. When there are no single-ended constraints the satisfaction of the conditions of the 
Lagrange-Dirichlet theorem is verified by applying the Sylvester criterion to the matrix of 
second-order partial derivatives of the potential energy in the postion of equilibrium. The presence 
of single-sided constraints qiSO, i = 1, . . . , m and the parameter CI complicates the problem 
considerably. We put x = q - q* and represent the function ll(q, a) in the form 

fl(4,l.G = L&I’, a) + %Q(-% a) +P(xt 4) (2.1) 

for any (YE R, where Q (x, a) is a quadratic form in the variables xi with coefficients depending on (Y, 
and [P(x, a)[/]~[*+0 as (x/-+0 f or all a E R. We will confine ourselves to the case when II(q, a) 
depends linearly on cx Then 

Q(x, a) = (x,Ax) + a(x,Bx) (2.2) 

is a pencil of quadratic forms, where A and B are symmetric matrices. We will denote by 

c= IXER”lX~.O, i= l,...,mI (2.3) 

a cone in the space R”. 
We have the following assertion [5]. 

Lemma 1. For a strict local minimum to exist in the domain C~I D for the function lI(q, a) at the 
point q* it is necessary for Q (x, (Y) > 0 for x E C, and sufficient for Q (x, cy) > 0 for x E C. 

We denote by r the set of those values of (Y for which the quadratic form Q(x, (Y) (2.2) is 
positive-definite. A quadratic form which takes positive values in a domain C will be called 
positive-definite in the domain C, and we denote by pC R the set of those values of (Y for which the 
form Q (x, cz) is positive-definite in the domain C. A symmetric matrix will be called positive-definite 
in the domain C if the corresponding quadratic form is positive-definite in that domain. 
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It is obvious that r Cp. Both these sets are open. We will formulate and prove an assertion on the 
structures of the sets r and p. 

Lemma 2. The set p is an open interval of the form (pl, p2). If B # 0, then the possible cases are: 
(a) pi> -00, p2<+m; (b) pi = -m, pz< +m; and (c) pl>--m, p2 = +m. The same also applies to 
thesetr=(r1,r2). 

Proof. We shall prove the assertions for the set p. The assertions for r are proved similarly. We assume that p 
is not an interval. Then there are numbers Q </?< y such that (Y, yEp and p65 p. Consequently, there is an 
x’ E C (x’ E R” for the r case) satisfying the inequality Q (x’, /3) < 0. Then because Q (x’, LY) > 0, it follows from 
(2.2) and using p - (Y > 0 that (x’, Bx’ ) < 0, which contradicts the condition yE p because 

Q(x’, -r) = Q(x’> 81+ (Y - iV W, Bx') < 0 

If the matrix B is non-zero, then the interval p cannot coincide with the entire real axis. The lemma is proved. 
We will denote by i, and r the closures of the sets p and r. If (Y g p then a vector x’ exists such that 

Q(x’, cz) <O. From Lemmas 1 and 2 the following theorem follows. 

Theorem 3. Suppose the function II(q, a) is analytic in some neighbourhood D of the point 

4* = (0, * . . > 0, &+I 7 . * ., qz) ED, that at the point q* condition (1.4) is satisfied for all (Y E R, the 
quadratic form in expansion (2.1) has the form (2.2), and Bf 0. Then one can find an interval 
p = (pi, p2) such that for (Y up the function II(q, a) has a strict local minimum in the domain Cn D 
at the point q*, while for (Y epo there is no local minimum at q*. 

For aEp n R Theorem 1 guarantees Lyapunov stability at the position of equilibrium q*, while for 
(Y g p II R Theorem 2 guarantees instability at q*. 

3. We shall describe a method for finding the boundaries p1 and pz of the interval of 
positive-definiteness for the pencil of quadratic forms (2.2) in the cone C. We write N = { 1,2, . . . , 
n}, M = (1, 2, . . .) m}, which are sets of indices. For any subset IL M we denote the number of 
indices in the set Z by m(Z), and put n(Z) = n - m + m(Z). For any symmetric n x n matrix D we 
denote by D(Z) the n(Z) x n(Z) matrix obtained from D by eliminating rows and columns with 
numbers i 6!! I. 

Suppose ZGM, I#0 and E,=A+aB. We denote by C(Z) a cone of the form xER”(‘)Ixj~O, _ . _. 
i E Z and by p(Z) = [pi (I), k(Z)] the interval of positive-definiteness of the pencil of quadratic forms 
with matrix E, (I) in the cone C(Z). The notation r(Z), rl (I) and r2(Z) has similar meanings. 

The proposed method of finding the interval p = p(M) is based on inductively reducing the 
dimensionality and uses a result of [6]. The first step of the induction is given by Lemma 3. 

Lemma 3. Let iE M. For the matrix _&J(i)) to be positive-definite in the cone C({i}) it is 
necessary and sufficient for it to be positive-definite throughout the space Rn({‘}), i.e. 

p(H) = r(G>). 

Proof. We only need to prove necessity. We assume that the matrix E,({i}), positive-definite in the cone 
C({i}), is not positive-definite in R n((i)). Then one can find a vector yER”({‘)), yEC({i}) such that 
(y, E,({i})y)~O.Thismeansthaty~<O.Butthenz= -yEC({i}), h’ h w rc contradicts the assumption, because 

(2, E,(G) = 01, E,(i)y). 
An n(Z) x n(Z) matrix D(Z) will be called minimal with respect to the index set Z if it is not 

positive-definite, but all matrices D(Z\i), iEZ are positive-definite. Using the above notation the 
minimality of the matrix E,(Z) with respect to the set Z is expressed by the satisfaction of the 
conditions CY g r(Z) and (Y E r (Z\(i)) for all i E 1. If for a given (Y the matrix E, is not positive-definite 
and the matrices E, ({i}) are positive-definite for all iE Z (and this is necessary for the positive 
definiteness of the matrix E, in the domain C because of Lemma 3), then we have found sets Z with 
respect to which the matrices E, (I) are minimal. 

The assertion below is given without the proof (the proof almost literally repeats that of 
Theorem 1 from [6]). 
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Theorem 4. Suppose Zc M and m(Z) 2 2. Then to satisfy the conditions (Y E p(Z) it is necessary and 
sufficient to satisfy one of three conditions: (a) cr~r(Z), (b) (rE r(Z), for all iEZ aEp(Z\{i}) and 
there is at least one i0 C Z such that (YE r (Z\{io}) ( i.e. the matrix E, (I) is not minimal with respect to 
I), (c) the matrix E, (I) is minimal with respect to Z and, for some (arbitrary) vector y f 0 satisfying 
the conditions Q(y, (Y) ~0, yi = 0 for iC I, has amongst its components yi, iEZ components of 
opposite sign. 

Remark. If the matrix E,(Z) is minimal with respect to I, then by definition it is not positive-definite and a 
vector y which gives the quadratic form Q(x, a) a non-negative value and satisfying the conditions yi = 0 for 
iE Z can always be found. If for some a the matrix E,(Z) is minimal with respect to I, then at least one of the 
conditions 

(3.1) 

(3.2) 

is satisfied. 
Suppose, to fix our ideas, that condition (3.1) is satisfied. From the definition of rl(Z) the matrix E,(Z) is 

positive-definite for a = rl (I) + E for sufficiently small E> 0 and is not positive-definite for a < r-1 (I). This means 
that for ri (I) # - 00 one can find a vector y # 0 satisfying the conditions Q Iv, rl (Z)] = 0 and yi = 0 for i 65 I. This 
vector is the solution of the system of linear equations 

(3.3) 

.q=O, iEM\I 

for a = rl(Z), where aij and b, are elements of the matrices A and B. Because for sufficiently small E>O we 
have Q(y, r,(Z)+E)>O, then (y, By)<0 and, consequently, Q(y, a)<0 for all a<rl(Z). Thus, if condition 
(3.1) is satisfied, and the vector y#O satisfies condition (3.3), then the vector y can be used to verify the 
condition in Theorem 4 for any r-i(Z) 6a<maxiEIrl (Z\(i)). The presence in the vector y of components of 
oppositesignmeansthaty#Oandy~CU(-C),where-C={z(-zEC}. 

If (3.2) is satisfied, then replacing a by r*(Z) in (3.3), we obtain a vector y # 0 satisfying the conditions yi = 0 
foriEZand[Q(y,r2(Z)] =OandQ(y,a)<Oformaxi~lrz(Z\{i})<a~ra(Z). 

If ri (I) > - 03, then Eq. (3.3) has non-trivial solutions for a = rl (I). We denote any one of them by yl (I). If 
r2 (I) < + 00 we similarly use y2 (I) to denote an arbitrary non-trivial solution of system (3.3) by a = rl (I). For 
those Zc M which contain at least two indices we put 

r; 0 = muriElr, cl\lzl>, P; (0 = maxfEIPI (I\Jzl) 

From Theorem 4 and its remark there follows a recurrence relation for the sequential definition of 
the values of pk(Z), k = 1, 2, ZCM. 

Foranyi=l,..., m we have pl({i}) = rl({i}). Suppose m(Z)32. Then if rl (I) = p;(Z), then 
p1 (I) = pi (I). If however rl (I) >p; (I), then 

P,(Z) = I 
tr (Z) , if r; (Z) = ~1 (Z) > -0 and y1 (Z) E C U (-C) 

pi (Z) otherwise (3.4) 

Foranyi=l, . . . . m we similarly have p2({i}) = rl({i}). Suppose m(Z)>2. If rz(Z) = p;(Z), 
then pz (I) = p;(Z). If however rz(Z) <pi (I), then 

P2(0 = 

rz(z), if r;(z) = p;(z)<+- and ya(z)ECU(--C) 

pi (I) otherwise 

12 ’ = minjEzr2(f\Iil), pi = mini E z p,(f\lil) 

(3.5) 

4. The proposed method enables us to determine inductively the values p1 (M), pz(M) of the 
boundaries of the interval of positive definiteness of the pencil of quadratic forms (2.2) in the cone C 
assuming that rl (I), r2 (I) are known for all ZcM. We shall consider the method for determining 
rl (I) and r2 (I). Suppose ZC M, m(Z) < m and ri (I), r2 (I) are known. If aE [ri (I), r2(Z)], then the 
symmetric n(Z) x n(Z) matrices E, (I) are positive-definite. Then according to Sylvester’s criterion 
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TABLE 1 

I 4) YIU) YZV) D(Z) 

P,4) 
{3>4) 
{112,3) 
{1,2,4) 
{1,3,4) 
{2,3,4) 
{1,2,3,4) 

c--03; 2) 
(-3; 00) 
(-a; 1.5) 

(-3; 00) 
(-2.86; 1.86) 
(-cc); 1.5) 
(-2.39; 1.39) 
(-2.5; 1) 

(-3; m) 
(-2.89; 1.39) 
(-2.32; 0.89) 
(-2.21; 1.21) 
(-2.23; 1.08) 

(-2.35; 0.85) 
(-1.27; 0) 

- 
- 
- 

F; -7.291 

;; 3.281 
[l; 0.251 

K; -9.01 
[-0.6; 3.8; l] 
[0.4; -0.5; l] 
[0.3; -0.13; I] 
[3.1; 1; -1.531 

[0.6; -0.95; -0.53; 1] 

- 

II; -0.211 
- 

[l; 0.461 

[l; 21 

F; -0.211 
[-0.37; 0.61; l] 
[2.1; -0.5; l] 

[0.72; -1.19; l] 
[0.52; 1; -0.261 
[l; -1; -1; l] 

(- m; 2) 
(-3; m) 
(-co; 1.5) 

(-3; m) 
(-3; 2) 
(--03; 1.5) 

(-2.39; 1.39) 
(-2.5; 1) 

(-3; m) 
(-3; 1.5) 
(-2.5; 1) 
(-2.39; 1.39) 
(-2.39; 1.39) 
(-2.5; 1) 
(-2.39; 1) 

for any J = IU {i}, iE M\I the matrix E, (J) is positive-definite if and only if the matrix E,(I) is 
positive-definite and the condition det E, (I) > 0 is satisfied. Because by Lemma 2 the sets r(I) and 
r(J) are intervals and r(J)Cr(l), the interval r(J) is extracted from r(1) by one or two roots of the 

equation det E, (J) = 0 lying in the interval r(I), and the condition det E, (J) > 0 for a E r(J). 
If m = it, then for any iE M the matrices E, ({i}) are numbers and the interval r ({ i}) is given by 

the condition aii + crbi,>O, Here either rl ((i}) = --03 or r2( (i}) = +m. All the remaining r(l) are 

given by induction, as was shown above. If however m<n, then the interval r(#) is also given by 

induction with successive borderings, starting with an arbitrary index iEN\M, as a result of the 

considerations given above. 

5. As an example we consider the system of Fig. 2. It is required to find an interval for the rotational 
frequency w for which Theorems 1 and 2 guarantee stability for the equilibrium state qT = qf = q; = q4$ = 0. 

Putting LY = o* in formula (1.5), we obtain expressions for the matrices A and B in the expansion (2.1), (2.2). 

Kia + Kl4 Kit 0 -K14 

K11 “1s + “la -Kza 0 

A= 0 -KS) 43 + 54 54 

-K14 0 “.t 4 KI4 + KS4 

B= diagI-m,/:,m,If,-m,I~.m,If1 

Suppose ~~~ = K34 = 1, ~~~ = K14 = 2, II = 1, = i3 = l4 = 1, ml = 1.5, m2 = m4 = 1, m3 = 2. The interval r(l) is 

determined by the method given in Sec. 4. The interval p(Z) is established by relations (3.4) and (3.5). The 
results of the calculations are given in Table 1, the third and fourth columns of which contain the vectors y1 (I) 

and ~~(1). For Z= {l}, {2}, (3) and (4) th ese vectors are undefined because m(Z) = 2. For the subsets 

Z = {1,3) and C2,4) yl(Z) and YZ(Z) are undefined because the conditions rk (I) = pi (I), k = 1,2 are satisfied. 
Thus p = p(M) = (-2.5,l). Because I;Y stands for w 2, R = [0, +m). Theorem 1 ensures stability at the 

equilibrium position q* for 0 s w< 1 and Theorem 2 ensures instability at q* when w> 1. 

1. 
2. 

3. 
4. 
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A general analysis of non-linear oscillations of conservative non-holonomic systems is presented: the choice 

of special coordinates in a neighbourhood of the equilibrium manifold, the analytic structure of normal 

forms of higher approximations beginning with the second, the use of the energy integral, and the explicit 

form of approximate solutions. 

THE EQUATIONS of motion of such systems to a first approximation have been considered both for 
the case of the critical point of the potential energy [l] and for the case of an arbitrary regular 
equilibrium [2]. The approximated constraint equations were integrated in the first paper, but not in 
the second. This gave rise to essentially irrelevant polemics, because in the general case it is proper 
to consider the neighbourhood of a manifold of equilibria rather than an isolated equilibrium [3]. 

Numerous investigations of the stability of non-holonomic systems (see the review [4]) have been 
largely based on the first approximation equation, mainly for the non-conservative case. Theorems 
on instability at the critical point are exceptions: the method of Chetayev functions was used [4] and 
asymptotic motions were constructed [5]. 

If all eigenvalues lie on the imaginary axis, the difference between the exact solution and the first 
approximation remains small only for finite times. It follows that interesting qualitative effects at 
long times in the motion of conservative non-holonomic systems about an equilibrium can only be 
found by turning to higher approximations, i.e. by utilizing the method of normal forms (see, e.g. 
[6,7]). The first such investigation was the paper by Markeyev [8]. 

Below it is shown that non-linear oscillations of systems with non-integrable constraints can be 
naturally considered in the framework of the general concept of weak non-holonomicity [9], and 
their normal forms possess definite characteristic features. 
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